Использование инновационных методов анализа данных с целью снижения кредитного риска

Информация » Кредитная политика коммерческого банка » Использование инновационных методов анализа данных с целью снижения кредитного риска

Страница 2

использование приемлемой модели и ее совершенствование;

Именно с помощью такого подхода составлены анкеты - заявки на получение кредита. Экспертами в данной области были выявлены факторы, наиболее влияющие на результат. Эту информацию и заполняют в анкетах потенциальные заемщики. Помощь в проверке гипотез может оказать реализованный в Deductor факторный анализ. Данный инструмент выявляет значимость тех или иных факторов.

Итак, задача заключается в построении модели оценки (классификации) потенциальных заемщиков. Решение задачи также должно обладать большой достоверностью классификации, возможностью адаптации к любым условиям, простотой использования модели.

Пользуясь приведенной методикой, была предложена гипотеза о том, какие факторы влияют на кредитоспособность человека. По мнению экспертов, по этим факторам можно учесть суммарный риск. Тем самым должно достигаться и отнесение потенциального заемщика к способным вернуть кредит или не способным.

"Дерево решений" (Приложение В) - один из методов автоматического анализа данных. Получаемая модель - это способ представления правил в иерархической, последовательной структуре, где каждому объекту соответствует единственный узел, дающий решение.

Сущность метода заключается в следующем:

На основе данных, за прошлые периоды строится "дерево". При этом класс каждой из ситуаций, на основе которых строится "дерево", заранее известен. В нашем случае должно быть известно, была ли возвращена основная сумма долга и проценты, и не было ли просрочек в платежах.

При построении "дерева" все известные ситуации обучающей выборки сначала попадают в верхний узел, а потом распределяются по узлам, которые в свою очередь также могут быть разбиты на дочерние узлы. Критерий разбиения - это различные значения какого-либо входного фактора. Для определения поля, по которому будет происходить разбиение, используется показатель, называемый энтропия - мера неопределенности. Выбирается то поле, при разбиении по которому устраняется больше неопределенности. Неопределенность тем выше, чем больше примесей (объектов, относящихся к различным классам) находятся в одном узле. Энтропия равна нулю, если в узле будут находиться объекты, относящиеся к одному классу.

Полученную модель используют при определении класса (Давать / Не давать кредит) вновь возникших ситуаций (поступила заявка на получение кредита).

При существенном изменении текущей ситуации на рынке, "дерево" можно перестроить, т.е. адаптировать к существующей обстановке.

Для демонстрации подобной технологии будет использоваться программа Tree Analyzer из пакета Deductor ver.3. В качестве исходных данных была взята выборка, состоящая из 1000 записей, где каждая запись - это описание характеристик заемщика плюс параметр, описывающий его поведение во время погашения ссуды. При обучении дерева использовались следующие факторы, определяющие заемщика: "N Паспорта"; "ФИО"; "Адрес"; "Размер ссуды"; "Срок ссуды"; "Цель ссуды"; "Среднемесячный доход"; "Среднемесячный расход"; "Основное направление расходов"; "Наличие недвижимости"; "Наличие автотранспорта"; "Наличие банковского счета"; "Наличие страховки"; "Название организации"; "Отраслевая принадлежность предприятия"; "Срок работы на данном предприятии"; "Направление деятельности заемщика"; "Срок работы на данном направлении"; "Пол"; "Семейное положение"; "Количество лет"; "Количество иждивенцев"; "Срок проживания в данной местности"; "Обеспеченность займа"; "Давать кредит". При этом поля: "N Паспорта", "ФИО", "Адрес", "Название организации" алгоритм уже до начала построения дерева решений определил как непригодные (рисунок 3.3) по причине практической уникальности каждого из значений.

Страницы: 1 2 3 4

Другие материалы:

Движение Райффайзена
Райффайзен начал свою практическую деятельность одновременно с Шульце в юго-западной части современной Германии, на Рейне. Первые годы его работы на поприще общественного служения посвящены были также благотворительной помощи «недостаточн ...

Оценка платежеспособности заемщика и поручителя - физического лица
Оценку платежеспособности заемщика и поручителя осуществляет кредитный работник Сбербанка на основании документов, подтверждающих величину доходов и размер производимых удержаний, и представленного заявления - анкеты. Справка предприятия ...

Организационно-правовые основы кредитных операций банков
Говоря о правовом регулировании той или иной сферы, нельзя не отметить многочисленность законов, положений, постановлений и инструкций в области кредитных организаций. Основным нормативно-правовым актом, действующим в банковской сфере, яв ...